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1 Overview

Under this RADC contract the University of Rochester developed and disseminated
papers, ideas, algorithms, analysis, software, applications, and implementations for
parallel vision applications and programming environments for parallel computer vi-
sion. The work has been widely reported and highly influential. The investigators
have been awarded several honors Faculty members involved have received several
prestigious honors, including an IBM Faculty Development Award for Michael Scott
and an ONR Young Investigator Award for Tom LeBlanc. We were awarded a DARPA
Parallel Systems postgraduate fellowship. We have won several Best Paper awards.
From 1984 to 1989 the department produced approximately 400 papers, more than
half of which are in refereed conferences and journals. There have been 14 com-
pleted Ph.D. theses directly related to parallel vision and the related programming
environment, and approximately ten more such theses are in progress.

As a part of the RADC contract, we developed a heterogeneous parallel architec-
ture involving pipelined and MIMD parallelism, and integrated it with a high perfor-
mance 9 degree of freedom robot head. The hardware of the laboratory is described
in- tie next section. The most significanG eiivironment development work centered on
the Butterfly Parallel Processor and tht. MaxVideo pipelined parallel image proces-
sor. For -the Butterfly, the Psyche multi-model operating system was developed (as
well as two other experimental operating systems), and the Lynx language compiler
ported. Much basic and influential performance monitoring and debugging work was
completed, resulting in working systems and novel algorithms. There was also signif-
icant research in systems and applications using the other parallel architecture in the
laboratory, the MaxVideo parallel pipelined image processor.

Early in the contract period, Rochester demonstrated SIMD-like programs on the
BBN Butterfly Parallel Processor that show linear parallel speedup. Many appli-
cations for the image processing pipeline (including tracking, color histogramming,
feature detection, frame-rate depth maps, frame-rate time-to-collision maps, large-
scale correlations, segmentation using motion blur, and others) have been written.
The efficacy of intimate cooperation between vision computations and controlled mo-
tion has been demonstrated. This work has attracted national attention and won
international prizes. The Zebra object-oriented system for Datacube programming
was developed, and the Zed menu editor built on top of Zebra. These programming
environments are useful for any register-level devices, and are a considerable improve-
ment on previous Datacube environments. They are being made available to all by
anonymous ftp.

Programming MIMD applications is difficult, and Rochester is a leader in devel-
oping operating systems (PSYCHE), performance monitoring (PPUTTS) and dcbug-
ging (INSTANT REPLAY) tools to make the job easier. The PLATINUM system
solves automatically many of the problems (code and data replication and cacheing)
in getting SIMD-like programs to run efficiently on Non Uniform Memory Access
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architectures (such as hypercubes, Butterfly, Encore, etc.). The MIMD program de-
velopment tools (PPUTTS, Instant Replay, and Moviola) provide several graphical
views and a LISP interface to a multi-process, multi-processor application. The sys-
tem provides repeatable single-stepping, statistics, symbolic debugging, and other
"traditional" debugging techniques that have not previously been available to par-
allel programmers. This work -has produced many influential papers, several prizes,
and the operational systems.

At the end of the contract period the PSYCHE operating system was operational,
and is currently supporting multi-agent applications, and multi-model (e.g. both
threads and heavyweight processes) programming environments. PSYCHE has been
used to support five independent processes controlling the bouncing of a tethered bal-
loon with a paddle - this hybrid system uses pipelined parallelism from 'ie MaxVideo
system for low level visual input. As a result of the RADC contract, we are now de-
veloping plans (the ARMTRAK system) for integrating pipelined parallelism, MIMD
parallelism with multiple computational models and sequential planning paradigms
to manage a dynamic model railroad system.

Rochester has implemented object recognition algorithms in neural nets, and de-
veloped hardware realizations for the resulting constraint-propagation networks. The
domain includes large sets of -objects, and uses Bayesian techniques to handle par-
tial and incomplete information. The Rochester Connectionist Simulator and the
Zebra/Zed systems are available by anonymous ftp. Together they have been dis-
tributed to several hundred sites worldwide.

This final, report starts with a quick guide to key papers that have been produced
over the years, and then in turn briefly outlines the Laboratory, parallel computer
vision- applications, integration of a cognitive layer -into the system, support work
in operating systems, languages, utilities, performance monitoring, pipelined- paral-
lelism, and technology transfer issues. A list of theses produced under the contract
is included. More detail is available from the papers in- the literature, and- extensive
references are provided.

2 Key Reports by Topic

This section briefly points out key reports. More detail on these projects appears in
later-sections of this final report.

2.1 Laboratory for Parallel Vision Research

During the contract period, Rochester developed and -commissioned a binocular robot
head- acquired and commissioned a multiple degree-of-freedom platform for the 3-dof
robot -head, and acquired a -real-time, pipelined parallel image processing engine.
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The laboratory allows us to test our systems concepts in a complex, visuo-motor
real-time environment. Software integration is important as wcll: PSYCHE's first
application will be to manage the higher-level data structures (e.g. the world model)
in an integrated parallel vision system that also uses the pipelined parallelism of the
frame-rate MaxVideo image processing system. The key reports are [Brown et al.
1988 (Rochester Robot); Ballard 1990 (Animate Vision); Ballard et al. 1987 (Eye
Movements); Brown and Rimey 1988 (Coordinate systems, kinematics...); Brown
1988 (Parallel- Vision with the Butterfly); Brown 1989a (Gaze Control)].

2.2 Vision Applications

Vision applications are an important part of our work, but are only indirectly sup-
ported by the contract, which views applications as potential users of the parallel
systems we are developing. For example, Paul Chou's work used the Markov Ran-
dom Field formulation for intermediate-level vision and produced results that have
been quantified and are better than any other known techniques. We have ported
his evidence-combination to the Butterfly, where it runs as a set of three cooperating
agents under Tom LeBlanc's SMP system. As another example, the work of -Cooper
and Swain- is -being ported to the Connection Machine at the University of Syracuse's
Parallel Computing Facility, NPAC. Object recognition, inference, quantification- of
performance in -biologically oriented neural--net computational techniques, and hard-

ware for relaxation- computations have all been -under active study.

Several parallel vision applications were pursued, including Butterfly program-
ming, Markov Random Field and connectionist research, and work aimed at inte-
grating the real-time laboratory and using it for complex planning tasks that in-
clude sensing and acting. Key papers are [Feldman et al. 1988a,b; Feldman 1987
(Basic connectionism); Simard et al. 1988 (Recurrent backpropagation); Porat and
Feldman 1988 (Learning theory); Olson et al. 1987 (Vision on butterfly); Ballard
and Ozcandarli- 1988 (Kinetic depth calculations); Brown et al. 1989a (decentral-
ized Kalman filters); Aloimonos and Brown 1988 (Robust computation of intrinsic
imagds); Chou and Brown 1988 (Sensor fusion,- reconstruction and. labeling); Wix-
son and Ballard- 1990 (Color histograms); Rimey and Brown 1990 (Hidden Markov
models); Yamauchi 1989 (Juggler); Nelson 1990- (Flow fields); Cooper 1988, (Struc-
ture recognition); Slier 1987a,b,c (Probabilistic low-level visio-.); Swain 1988 (Object
recognition from large database); Swain, and Cooper 1988 (Parallel hardvare-for-recog-
nition); Martin, -Brown, and Allen 1990, (ARMTRAK project); Allen andi IT'ayes 1985
(Theory of time), Allen 1989 (Representing time)].

2.3 Parallel Hardware and Programming Languages.

Throughout the -contract period Rochester has kept pace with the technical develop-
ments of the Butterfly product line of BBN-ACI. We have owned three, generations
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of Butterfly computers, including one of the largest ever sold. Much of our research
transcends any particular piece of hardware, though its implementation of course
requires intimate familiarity with particular hardware.

Languages for MIMD parallel computers have been developed and ported under
the contract, and quantitative comparisons made between programming models. A
library for programming- the MaxVideo pipeline parallel image analysis hardware has
also been developed. The key reports are [LeBlanc et al. 1988 (Large-scale parallel
programming); Scott et al. 1990 (Multi-model parallel programming); Crowl 1989 (A
uniform object model); Tilley 1989 (Zebra for MaxVideo)].

2.4 Parallel Programming Environment - Operating Sys-
tems

Three operating systems (Elmwood, Platinum, Psyche) have been developed for the
Butterfly. The most ambitious project is Psyche, though Platinum solves automati-
cally a number of problems-that users face when using Uniform System-style program-
ming on a MIMD computer -(Automatic cacheing and data migration, for instance).
The key papers are [Scott et al. 1989b,c (Psyche description); LeBlanc-et al. 1989b
(Elmwood description); Cox and Fowler 1989 (Platinum description)].

2.5 Parallel Programming Environment - Utilities and Li-
braries

Along with languages and operating systems, Rochester produced systems utilities for
communication, file systems, and compilers. They span a broad range from parallel
file systems through new languages for expressing parallel computation. Applications
packages such as the current version of the neural net simulator and the- image-
processing utilities allow speedups of up to a factor of 100 over single-workstation
implementations. User interfaces to large multiprocessor computers -are a difficult
issue addressed by Yap's -work, and many of the packages extend the- range of com-
putational models available- to a user. For instance, the Ant Farm project provides
capability we noticed we-needed after the first DARPA Parallel Architectures Bench-
mark and Workshop, namely the ability to support many lightweight -processes. The
key papers are [ Scott and-Jones 1988 (Ant Farm); Dibble and Scott 1989a,b (-,idge
file system); Bolosky et al 1989 (memory management techniques); Goddard et al.
1989 (Connectionist simulator); LeBlanc and Jain 1987 (Crowd control); Yap and
Scott 1990 (PenGuin)].
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2.6 Parallel ProgLtmming Environment - Performance Mon-
itoring

Debugging and performance monitoring in an MIMD environment are significantly
more difficult than on a uniprocessor. Rochester contributed many results over the
course of the contract. The instant replay system allows normal cyclic debugging
in a nondeterministic parallel environment by keeping a log of interactlons between
processes. Moviola is a suite of interactivu perform, 1ce monitoring tools. The key
papers are [LeBlanc and Mellor-Crummey 1987 (Instant Replay); Fowler et al. 1988,
LeBlanc et al. 1990 (Moviola)].

3 The Laboratory

The Rochester Robotics Laboratory has developed, during the years of the RADC
contract, to the configuration described in this s,.ztion. It currently consists of four
key components (Fig. 1): a "head" containing cameras for visual input, a robot
arm that supports and moves the head, a special-purpose parallel processor for high-
bandwidth, low-level vision processing, and a general-purpose parallel processor for
high-level vision and planning. This unique design allows for visuo-motor exploration
over an 800 cubic foot workspace, while also providing huge computing and power
resources. Thus, we do not suffer the communication and power limitations of most
mobile platforms.

The robot head (shown in Fig. 2) built as a joint project with the University's
Mechanical Engineering Department, has three motors and two CCD high-resolution
television cameras providing input to a MaxVideo digitizer and pipelined image-
processing system. One motor controls pitch or altitude of the two-eye platform,
and separate motors control each camera's yaw or azimuth, providing independent
"vergence" control. The motors have a resolution of 2,500 positions per revolution
and a maximum speed of 400 degrees/second. The controllers allow sophisticated
velocity and position commands and data read-back.

The robot body is a PUMA761 six degree-of-freedom arm with a two meter radius
workspace and a top speed of about one meter/second. It is controlled by a. dedi-
cated LSI-11 computer implementing the proprietary VAL execution monitor and.
programming interface.

The MaxVideo system consists of several independent boards that can- be-cabled
together to achieve many frame-rate image analysis capabilities: digitizing, storage,
and transmission of images and sub-images, 8x8 or larger convolution, pixel-wise
image processing, cross-bar image pipeline switching for dynamic reconfiguration, of
the image pipeline, look-up tables, histogramming and feature location. A digital
signal "':ocessing computer on one board can perform arbitrary computations, and
also has a high speed image bus interface and a VME bus master interface-so it can
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Figure 2: The Rochester Robot. A multi-exposure photograph of the "Rochester
Robot" in action. The arm is the largest -industrial arn on the market: while the
unique head was designed by Professor Dana Ballard.
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program the other boards in the same manner as the host. The MaxVideo boards are
all register programmable and are controlled by the Butterfly or Sun via VME bus.

A unique feature of our laboratory, one crucial for our future research, is the ca-
pability to use a multiprocessor as the central computing resource and host. Our
Butterfly Plus Parallel Processor contains 28 nodes, each consisting of an MC68020
processor, MC68851 MMU, MC68881 FPU, and 4 MBytes of memory. The Butter-
fly is a shared-memory multiprocessor with non-uniform memory access times; each
processor may directly access any memory in the sN stem, but with approximately
15 times greater latency. The Butterfly has a VME bus connection that mounts in
the same card cage as the MaxVideo and motor controller boards. Currently, a SUN
workstation acts as a host system for the lab. As software develops on the Butterfly,
we plan to migrate functionality from the workstation host to the Butterfly.

The RADC contract supported the development of parallel applications algorithms
and the development of software for the -two parallel computing engines in this labo-
ratory, the Butterfly and the MaxVideo.

4 Parallel Vision Applications

Although the-focus of the contract was--on developing a programming environment,
Rochester also did parallel vision applications as a test and a driving force for the
systems development. This section briefly outlines some of the more influential of the
projects: more details are available in the literature [e.g. Brown et al. 1985; 198S].

4.1 SIMD-style Low-level Vision on the Butterfly

Rochester participated in the first DARPA benchmark study. One aspect of that
work motivated much of our current research in multi-model parallel programming
environments and performance modeling tools. The other aspect -was a successful
demonstration that SIMD-style (data-parallel) low-level vision applications could be
performed on an MIMD computer. Fig. 3 shows some results for border-following.
Extensive analysis and demonstration programs for multi-resolution image pyramid
generation, line finding, connected component analysis, and the Hough transform
were-also developed [Brown 1986; Olson 1986b,c; Olson et al 1987].

4.2 Parallel Object Recognition

Pul Coopei ,ind Michael Swain cooperated to investigate object -recognition, based
on object elational structure and some geometry, from a large database. This work
was based-in connectionist, massively parallel framework, and led -to -hardware (VLSI
circuit) designs and implementations on-the connection machine-at NPAC in Syracuse,
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Figure 4: Previous work on intrinsic image calculation.

NY [Cooper 1988, 1989; Cooper and Swain 1988, 1989; Swain and Cooper 1988; Swain
1988].

4.3 Cooperating Intrinsic Image Calculations

John Aloimonos took a mathematical approach in his thesis to unifying several dis-
parate results on extracting -physical attributes from images [Aloimonos et al. 1985,
Aloimonos 1986; Aloimonos and Brown 19841,b, 1988, 1989; Aloimonos and Swain
1985; Brown et al. 1987, etc.]. The state of knowledge when he started is shown in
Fig. 4.

As a result of his work, mathematical constraints were developed to allow these
calculations to be combined to produce more robust results with less restrictive as-
sumptions. This work is reported in his recent book Integration of Visual Modules,
written with Dave Schulman, and summarized in Fig. 5.

The characteristics of well-known visual problems are radically changed by this
approach (Fig. 6), which yields robust, linear solutions with fewer assumptions.
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4.4 Markov Random Fields and Massively Parallel IU

In their thesis work, Dave Sher and Paul Chou pursued a probabilistic approach to
image understanding, which could be implemented as a Markov Random Field [Sher
1987a,b,c; Chou 1988, Chou and Brown 1987a,b, Chou et al. 1987; etc]. Image
understanding then takes the form of labelling individual pixels or features in the
image with properties such as "boundary", "no boundary", or a depth value. This
approach allows for a uniform and real-time evidence combination algorithm for multi-
sensor fusion, and a parallelizable algorithm for the labelling. Using this approach,
the reconstructionist visual approach that tries to create depth maps from images is
integrated with the solution to the segmentation problem, which identifies boundaries
and objects within the scene. Chou developed the Highest Confidence First algorithm
for labelling. Chou made quantitative comparison between several known Markov
Random Field algorithms, and HCF was shown to be a superior method to all those
known at the time. HCF is inherently sequential. Later work at Rochester by Swain
and Wixson parallelized the algorithm for the Butterfly, with improved qualitative,
quantitative, (and of course timing) results [Swain and Wixson 1989, Swain et al.
1989].

Fig. 7 shows the performance of HCF on a boundary-detection task.

Fig. 8 shows the results of combining sparse depth measurements with intensity
data to produce a depth map of the scene and a boundary map simultaneously.

4.5 Pipelined Parallelism and Real-time Object Search

A good example of the cooperation of real-time vision processing and a mobile ob-
server is provided by Rochester's program of work on fast object detection, -which
uses relational modeling, and reasoning about occlusion.

The ability to find a certain object in an unknown environment is a component of
many real-world problems that a general-purpose robot might face. Lambert Wixson
studied this visual task, object search. His research is divided into three areas, all of
which attack the key problem of robustly finding the object in the smallest possible
time.

The first is the problem of object recognition. Most research on model-based
object recognition from a single camera has concentrated on robustness. While this
is obviously an important first step, the object search task brutally illustrates that
speed is just as important. Almost all current object recognition schemes require
that image features be matched to model features, requiring a time polynomial in
the number of features to perform the matching. This polynomial time is a result of
having to match the image features to the model features in order to calculate and
refine the pose estimate of the object in the scene. By adding an initial stage that
does not perform pose calculation but rather simply detects the likely presence of

15
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the object in the image, considerable efficiency can be gained. The idea is that this
initial stage would be used to rank each gaze in a set of candidate gazes according to
the likelihood that the image produced by the gaze contains the desired object. This
ranking can then be used to choose the order in which a more sophisticated object
recognition program (which would calculate pose) should be applied to the candidate
images.

Wixson [Wixson and Ballard 1989] constructed an object detection scheme that
relies on the assumption that the color histogram of an object can be used as an
object "signature" which is invariant over a wide range of scenes and object poses.
The color histogram is computed at 3Hz by the Datacube hardware, and the matching
compares 18 database items to a histogram in one second. Counting time to move
the robot to a new gaze position (one and one-half seconds per move), each gaze can
be evaluated for its object content in just under 3 seconds. Fig. 9 shows some sample
results.

The second area of object search is the use of high-level knowledge of common
relationships and interactions between objects (i.e.the contexts in which certain ob-
jects typically appear) to direct the search process [Wixson to appear]. For example,
if the robot is looking for a-pen, it might be wise to search-for a desk first. referred to
this use of high-level knowledge as indirect search. Our approach formulates indirect
search using a finite set of relationships (FRONT-OF, NEAR, LEFT-OF, etc.) be-
tween objects. The relationships may be known apriori or, more interestingly, derived
from experience With the scene. Initially objects will be represented as a (perhaps
partial) local coordinate system (a circularly symmetric object might only have a Z
axis and origin, for example) and a feature vector. Characterizing the occurrence of
relationships as Bernoulli trials leads to a confidence interval representation of the
probability of the relations holding. In turn, -these probabilities can be used in a
"highest impact first" search that acquires information in the order that maximally
decreases expected uncertainty. The result is to derive Garvey-like strategies on the
fly, with learning, and from first principles.

The third area of object search involves reasoning about obstacles and occlusion
to the extent that they affect the task of finding the desired object. This research
is in progress. We would like a system which can reason, for example, that since it
hasn't yet seen the object, but the area under the desk has not been examined, then
this area should be examined. Many issues are present in this problem. The largest is
the choice of a world representation which can support this reasoning without being
computationally problematic. The reasoning and world modeling must also be robust
to sensor noise and marginal errors in the depth estimation process used to detect
occlusions in the scene.

Wixson's work assumed a solution to the object recognition problem. Mike Swain
investigated color cues for object recognition [Swain 1988a,b]. Fig. 10 shows 19
pairs of images (the originals are colored): on the left of each pair is a catalog entry,
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Figure 9: (a) Top -view of the laboratory environment for a typical test run showing
the direction (but not the distance) of each object -with respect to the robot. (b)
Gaze directions produced by the object search mechanism for the "Clorox" and "All"
detergent boxes. Area of circle is proportignal to the confidence of detection in that
gaze. Numbers next to circles reflect the ordering of the confidences- in decreasing

order. The dashed lines in each circle are merely to -provide reference -points.
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Figure 10: Black and white reproduction of color originals of (catalog, instance) image
pairs.

on the right an instance from a real scene. 11 shows confusion matrices for the 19
image instances recognized from their catalog descriptions. The instance views have
different viewing angles from those that generated the catalog. The basic description
is a color histogram, and a saliency measure subtracts histogram features common
to the ensemble, thus weighting more heavily the features that are unique to each
object.

4.6 Gaze Control

In research carried out at Oxford, Chris Brown did work on Kalman filters for track-
ing applications (reported in the DARPA IU Proceedings), on projectively invariant
matching of geometric structures in images (reported in the European Vision Confer-
ence), and on control of Rochester's robot head [Brown 1989b,c; 1990a,b].

The work investigated predictive mechanisms to solve problems of cooperation
and delay. "Subsumption" architectures like those of Brooks and Connell find these
problems troublesome since internal state representations are minimized, control in-
teraction is usually limited to-preemption, and actions are synchronized only through
the outside world.
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The work developed eight camera controls and investigated their interaction. It
showed that predictive techniques can overcome the catastrophic effects of delays and
interactions. It made comparisons with primate gaze cortrols and with an open-loop
approach to delay. Tracking, gaze shifts, and vergence controls used three dimen-
sional, not retinal, coordinates. Optimal estimation techniques were used to estimate
and -predict the dynamic properties of the target.

The control algorithms are run in a simulation that is meant to be general and
flexible, but especially to capture the relevant aspects of the Rochester Robot. Previ-
ous-work with the Rochester Robot had already produced several implementations of
potential basic components of a real-time gaze-control system These components in-
cluded basic capabilities of target tracking, rapid gaze shifts, gaze stabilization against
head motion, verging the cameras, binocular stereo, optic flow and kinetic depth cal-
culations. These separate capabilities do not yet cooperate to accomplish tasks. The
work at Oxford was partly motivated by the need to integrate several capabilities
smoothly for a range of tasks useful for perception, navigation, manipulation, and in
general "survival".

There are four main coordinate systems of interest in this work: LAB, HEAD,
and (left and right) camera and retinal (Fig. 12). The LAB, HEAD, and camera
systems are three-dimensional, right-handed and orthogonal. The retinal system is
two-dimensional and orthogonal. LAB is rigidly attached-to the environment in which
the animate system and objects move. HEAD is rigidly attached to the head, and
(for this work) has three rotational and- three- translational degrees of freedom. The
camera- systems are -rigidly attached to the cameras and have independent pan and
a shared -tilt degree of freedom. The retinal systems represent image coordinates
-resulting-from perspective projection of -the visible world. The cameras are supported
on a -kinematic chain so that their principal points do not in general lie on any head
rotation, pan, or tilt axis.

The simulated system controls are summarized in Table 1. Our purpose was to
investigate, with some flexibility, the interactions of various forms of basic camera and
head -controls. The controls are not meant to model those of any biological system.
Rather -the goal was to build a system with sufficient functionality to exhibit many
control interactions. The interaction of a subset of these controls on target tracking
and-acquisition tasks (the "smooth -pursuit" and "saccadic" systems) was investigated
-and was used to illustrate the effects-of different control algorithms for coping with
delays.

Fig. 13. shows five of the control systems. These controls can act together
(Fig. -14) to achieve different complex visual tasks such as quick target acquisition
and- then tracking (Fig. 15). Extending the control system to deal with delays
-requires kinematic simulation of the head and dynamic simulation of the outside
world (Fig. 16).
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HCONTROL INPUT [ALT. INPUT [OUT
EYE
Gaze Shift Target (z, y), (:i, ) Target X,Y,Z, L. Pan, Tilt vel.

XYZ
Track Target (z, y) Target (i, j) L. Pan, Tilt vel.
Gaze Stabilize Head Origin 1i&, Ay, X, L. Pan, Tilt vel.

Y, Z
Vergence Horiz. Disparity _ Pan vel.
Virtual Position target (X, Y, Z) L. Pan, Tilt vel.
HEAD
Compensate Eye Pans, Tilt II AY)

Fast Head Rotate Target (X, Y, Z) _ ( AY)z, f
Virtual Position Target (X, Y, Z) (Iz, y)

Table 1: Eye and head control summary. The ALT. INPUT column shows alternate
forms of input. (x, y) are image coordinates, (X, Y, Z) are world coordinates, (Rx, Ry)
are head rotatiun angles. A design issue is whether-fast -gaze shifts and tracking are
performed only by the "dominant eye" camera-or by -both-cameras. Likewise vergence
can affect both cameras or the non-dominant camera.

4.7 Parallel Cooperating Agents and Juggler

Our first robotics application, a balloon bouncing program called Juggler, successfully
ran in November 1989 [Yamauchi 1989]. This application combines binocular camera
input, a pipelined image processor, and a 6-degree-of-freedom robot arm (with a
squash racquet attached) to bounce a balloon. The implementation use, a competing
agent model of motor control; five processes compete with each other for access to the
robot arm to position the balloon in the visual field, to -position the racquet under
the balloon, and to hit the balloon.

Each application process is allocated a physical processor, so scheduling is not a
concern. Juggler is robust because even if processes had -to share processors, failure
to execute any one process during a particular -time interval would have little if any
affect on behavior; in the competing agent model, each application -process continually
broadcasts commands to the robot in competition with other processes.

Juggler was a first attempt to integrate our operating systems efforts with the
development of applications. As a result of our experiences with Juggler, we are
making appropriate extensions to Psyche and communications capabilities, and we
have begun to experiment with user-level scheduling.
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4.8 The Workbench for Active Vision Experimentation

The Workbench for Active Vision Experimentation (WAVE) has been an ongoing
effort since the summer of 1988. Its purpose is to provide a uniform and general
purpose platform for experimental verification of our research [Brown 19SSa,b; Rimey
19901.

WAVE essentially was the first effort to "integrate everything in the Lab". The
original goals were to build a system which causes the Puma robot to visually explore
its environment for racquet balls randomly hanging from the Lab ceiling, and also
to produce an accompanying repertory of simple modular behaviors and capabilities.
In this system the Robot first moves to scan the entire Lab and locates each ball
using binary image analysis and stereo vision. Next the Robot moves around a ball
while keeping it centered in the field of view. A simple animate vision technique is
demonstrated-by computing a continuously time averaged image. The accompanying
Robot movement causes the background areas in the image to be blurred while the
object remains clear, thus demonstrating a simple segmentation technique. Finally
the robot pokes each ball with a stick. The now moving ball is visually tracked using
the eye motors on the Head (another simple animate vision idea). The overall system
is more fully described in reports by Brown. A further result of this effort was -a guide
for other members of our group on "how to use the Rochester robot".

Last summer the WAVE platform was put to further use in a study of the problem
of moving the Head to view the front of, or a characteristic view of, an- object. The
idea which -we -developed was to model vision with a parameter net -model- to model
Head movements with a basic PID controller, and then to study differential rela-
tionships between response patterns in the-parameter net and the command signals
sent to the PID controller. The parameter net represented an object using a Hough
transform of-its silhouette. Nearness to a characteristic viewpoint was related with a
distortion measure over nodes in the -parameter net. The system was implemented,
but performed poorly. A similar effort based on a color image approach (Wixson's
work, described above) performed slightly better.

Over time WAVE has evolved into a more general platform. In anticipation of mov-
ing over to the Psyche operating system running on the Butterfly parallel computer,
WAVE was-converted to the g++ programming language used by Psyche and WAVE
was converted to use the Zebra system for -programming our DataCube MaxVideo
image processing hardware. Zebra currently works with the Psyche/Butterfly system
as well as the original Sun machines. WAVE itself has not yet been adapted to run
under Psyche.

4.9 Modeling attentional behavior sequences with an aug-
mented hidden Markov model

Selective attention, or the intelligent application of limited visual resources, has
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emerged" as a basic topic for a long-range program of research we are now pursuing.
The concept here is that realistically any system has to deal with limited sensing and
computational resources, and that therefore we should focus our study on (selective
attention) mechanisms to deal with such limited resource situations.

One approach is to map the visual attention problem onto sensor allocation prob-
lems such as where to point a camera and where to allocate processing within a single
image from that camera. If we assume a spatially-variant sensor (such as one with a
small, high-resolution fovea and a large, low-resolution periphery) one specific prob-
lem is to decide what sequence of eye movements to make to selectively position the
fovea in the scene. One aspect of the work attacks the specific problem of modeling
foveation sequences. In most treatments of this subject, a sequence of eye movements
emerges as a result of sequential cognitive effort and image analysis, and is not ex-
plicitly represented. We decided to augment the usual paradigm with a new explicit
representation of probabilistic but task-dependent attentional sequencing. Explicit
sequences are something like motor skills; they efficiently capture the effect of much
cognitive activity and feedback-mediated behavior, and allow it to be generated quickly
with low cognitive overhead.

The explicit representation is an augmented hidden Markov model (AHMM). A
simple hidden Markov model can learn an emergent behavior and re-generate it as
an explicit data-oblivious sequence. An AHMM inqorporates a feedback sequence
to modify the generated sequence. It can therefore relearn or constantly modify its
own (feedback modified) explicit behavior, thus adapting to varying conditions. Two
AHMM models have been developed, the first model uses a simple external feedback
loop, the second model uses internal feedback which modifies the internal parameters
(probabilities) of the AHMM thus effecting the generation likelihoods directly. This
work has been experimentally verified using the capabilities of \WAVE and the results
are encouraging [Rimey and Brown 1990].

5 Planning in a Parallel System

We have been exploring ways of forming and executing strategies that involve se-
quences of primitive behaviors. Actions and perception are the only realistic way
to bring computerized decision-making and planning into contact with reality. This
"planning" capability is necessary for systems that are to be more than reflexive [Feist
1989a,b], and which must solve problems and make decisions about what to do next
[Allen and Pelavin 1986; Allen et al. 1990]. Making such decisions with uncertain
information under time constraints is beyond the current state of the art, although
decision-making under uncertainty, reasoning about actions through time [Allen 1989;
Allen and Hayes 1987], and in general the questions of what to bclieve and what to
do next pervade all of intelligent behavior. At Rochester, these questions are being
investigated in the context of ARMTRAK [Martin et al. 1990] , a micro-world un-
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der development, based on the control of model trains, designed to integrate work in
natural language, planning, vision, and robotics.

Two versions of ARMTRAK -have been implemented: a simulation and a set of
trains coupled to the sensors associated with the Rochester Robot. The simulation
allows rapid prototyping of planners and experimentation with problems posed by
different layouts. Simulations invariably involve simplifying assumptions, however,-so
the real trains and sensors in the vision lab allow us the rare opportunity of running
a symbolic planner in the real world. The train controller has been wired so that the
switchyard can be operated from outside the robot room. The vision routines are
able to recognize the existence of a moving train in its field of view and are able to
determine the state of a switch in its field of view. The robot also knows the locations
of the switches, so it can position itself to observe them. Despite its potential, the
ARMTRAK implementation is currently a demonstration of concept only. It does
not have a smooth interface between the LISP world, where all the work on planning
takes place, and the C environment, where the vision work is implemented. Our goal
is to support LISP on our multiprocessor, and to have shared data structures linking
the symbolic reasoner and the perception and action components of the system, which
themselves will rely on the integrated soft and hard real-time subsystems mentioned
above.

For ARMTRAK and other similar systems of the future, we would like to pro-
vide a solid substrate of visuo-motor behaviors and primitive capabilities, based on
well-understood real-time technology. The user of these capabilities should not have
to think about the details of their operation. Likewise, primitives for cooperation,
preemption, and parallel operation of these low-level capabilities should be provided:
a smooth integration of hard and soft real-time systems is an important aspect of this
work.

In addition to our ARMTRAK work, our studies of learning algorithms have
revealed ways of learning correct primitive sequences by trial and error or training
[Whitehead and Ballard 1990; Rimey and Brown 1990]. This work suggests ways
that systems can learn to adapt behaviors in complex environments and lays the
groundwork for building systems -that satisfice.

6 Parallel Operating Systems and the Psyche
Project

The centerpiece of the CER hardware grant (on which much of the RADC research
was based) was the purchase in 1985 of a 128-node BBN Butterfly Parallel Processor.
Over the course of the contract this machine was used to-support research in paral-
lel programming systems, computer vision, massively parallel connectionist models,
and the theory of parallel computation. CER allowed us to acquire and experiment
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with several generations of the Butterfly Parallel Processor from BBN-ACI. In par-
ticular, a later-generation Butterfly was obtained for operating systems research and
applications. Psyche is now the major activity surrounding the Butterfly. Activity
in the Psyche group involves -directly or indirectly two faculty members and four to
six graduate students. Psyche was running its first jobs just when the CER support
terminated, and since then it-has been expanding in usefulness to the user-community.

One goal was to create a programming environment for MIMD (Multiple instruc-
tion stream, multiple data stream) style computers. This architecture is complemen-
tary to other styles of parallel computing such as SIMD (in which identical computa-
tions are performed in parallel to different data) and neural nets. CER allowed us to
acquire and experiment with several generations of the Butterfly Parallel Processor
from BBN-ACI.

The problem with MIMD computation, which admits multiple independent co-
operating large processes and processors to run concurrently, is that the interactions
between programs (for instance their data accessing) are extremely hard to moni-
tor and even to repeat, given- -the potential for race conditions and the scheduling
differences that can take place -from run to run. Further, there are several-compet-
ing, individually adequate models of parallel programs at this level. For instance,
message-passing models and shared-memory models offer rather different -user views
of the computational resource. Although hardware was being built (like the BBN But-
terfly Parallel Processor)- to support different models of parallel computation, there
was a serious lack in the- current -state of the art of an operating system to support
several such models at once.

To improve the state of the-art in programming, conceptualizing, monitoring per-
formance, and optimizing efficiency in MIMD computation, we developed- systems
like PSYCHE (an operating system) and MOVIOLA (a kit of performance -monitor-
ing and debugging tools.) Altogether we also produced and exported about a dozen
other less ambitious systems and libraries. The interaction of the MOVIOLA de-
bugging and performance monitoring tools have had unexpected efficacy not just in
debugging but in algorithm development.

6.1 Early Work

At the time our Butterfly was purchased it was not yet clear whether shared memory
would be practical in large-scale multiprocessors. Previous architectures had been
limited in size; our Butterfly and its twin at BBN were for several years -the largest
shared- memory multiprocessors in the world, by a large margin. Potential -problems
with memory and intcrconnect contention, the management of highly-parallel shared
data structures, and the need to maximize locality of reference made our purchase a
risky venture. One of the most important results of our research was to show that
none of these problems is insurmountable. We used the Butterfly to obtain significant
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speedups (often nearly linear) on over 100 processors with a range of applications that
includes various aspects of computer vision [Brown et al. 1986; Brown 1988b; Olson
et al. 1987; Olson 1986b,c], connectionist network simulation [Feldnan et al. 1988b],
numerical algorithms [LeBlanc 1987, 1988a], computational geometry [Bukys 1986],
graph theory [Costanzo et al. 1986], combinatorial search [LeBlanc et al. 1988; Scott
1989], lexical and syntactic analysis [Gafter 1987, 1988], and parallel data structure
management [Mellor-Crummey 1987],

We also demonstrated, through our research in parallel programming environ-
ments and tools, that shared-memory machines are flexible enough to support effi-
cient implementations of a wide range of programming models, with both coarse and
fine-grain parallelism.

From 1984 to 1987, our systems work is best characterized as a period of experi-
mentation, designed to evaluate the potential of large NUMA (non-uniform memory
access) multiprocessors and to assess the need for software tools. In the course of
this experimentation we ported three compilers to the Butterfly [Scott 1989; Olson
1986a; Crowl 1988b], developed five major and several minor library packages [Crowl
1988b; Low 1986; LeBlanc 1988b; LeBlanc and Jain 1987; Scott and Jones 1988;
Olson 1986; LeBlanc and Mellor-Crummey 1986; Fowler et al. 1989], and built a
parallel file system [Dibble and Scott 1989a,b; Dibble et al. 1988] and two different
operating systems [LeBlanc et al 1989b; Cox and Fowler 1989]. Our work with the
Lynx distributed programming language [Scott 1987] yielded important information
on the inherent costs of message passing [Scott and Cox 1987] and the semantics
of the parallel language/operating system interface -[Scott 1986]. Experience with
a C++ communication library yielded similar insights for object-oriented systems
[Crowl 1988b].

A major focus of our experimentation with the Butterfly was the evaluation and
comparison of multiple models of parallel computing [Brown et al. 1986; LeBlanc
et al. 1988; LeBlanc 1986, 1988a]. BBN had already developed a model based on
fine-grain memory sharing [LeBlanc 19861. In addition, among the programming
environments listed above, we have implemented remote procedure calls [Low 1986];
an object-oriented encapsulation of processes, -memory blocks, and messages [Crowl
1988b]; a message-based library package [LeBlanc 1988b]; a shared-memory model
with numerous lightweight processes [Scott and- Jones 1988]; and a message-based
programming language [Scott 1989]. In an intensive benchmark study conducted in
1986 [Brown et al. 1986], we implemented seven different computer vision applications
on the Butterfly over the course of a three-week period. Based on the characteristics of
the problems, programmers chose to use four different -programming models, provided
by four of our systems packages. For one of the applications, none of the existing
packages provided a reasonable fit, and the awkwardness of the resulting code was a
major impetus for the development of yet another package [Scott and Jones 1988].

Our principal conclusion from this experimentation was that while every pro-
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gramming model has applications for which it seems appropriate, no single model
is appropriate for every application. Just as a general-purpose uniprocessor system
must permit programs to be written in a wide variety of languages (encompassing
a wide variety of models of sequential computation), we formed the belief that a
general-purpose multiprocessor system must permit programs to be-written under a
wide variety of parallel programming models. This conviction motivated development
of the Psyche operating system.

6.2 Psyche Motivation

As outlined above, our early work led to several conclusions.

1) Larqe-scalc shared-memory multiprocessors are practical. We achieved signif-
icant speedups (often almost linear) using over 100 processors on a wide range of
applications with mdny different operating systems, library packages, and languages.
Shared-memory multiprocessors appear to be able to support coarse-grain parallelism
just as efficiently as message-based multicomputers, while simultaneously support-
ing very fine-grain interactions. They provide an extremely flexible foundation for
general-purpose parallel computing, and for high-level vision in particular.

2) Programmers need multiple models of parallel computation. Though many styles
of communication and process structure can be implemented efficiently on a shared
memory machine, no single model can provide optimal performance- for all applica-
tions. Moreover, subjective experience indicates that conceptual clarity and ease of
programming are maximized by different models for different kinds of applicati, ,:.

In the course of our benchmark experiments [Brown et al. 1986], seven different prob-
lems were implemented using four different programming models. -One of the basic
conclusions of the study was that none of the models then available was appropriate
for certain graph problems; this experience led to the development of the Ant Farm
library package [Scott and Jones 1988). Large embedded applications- (such as vision)
may well require different programming models for different components; it therefore
seemed important to be able-to communicate across programming models as well.

3) An efficient implementation of a shared name space is valuable even in the
absence of uniform access -time. We found one of the primary advantages of shared
memory to be its familiar -computational model. A uniform addressing environment
allows programs to pass pointers and data structures containing pointers without
explicit translation. This uniformity of naming appears to be the primary reason
why programmers choose to- use BBN's Uniform System package. Even when non-
uniform access times force the programmer to deal explicitly with- local cacheing,
shared memory continues to provide a form of global name space that supports easy
copying of data from one location to another.

4) Dynamic fine-grain sharing is important for many applications. It is often
difficult to specify at creation time which data objects will be shared and which
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private, which local and which global, which long-lived and which temporary. It can
be particularly difficult to specify which processes will need access to specific pieces
of data, and wasteful to require processes to demonstrate -access rights for data.-they
may never use. Far preferable is a scheme in which all objects are potentially sharable
and treated uniformly, with -access control and other bookkeeping performed as late
as possible. Such a scheme provides the user with greater latitude in program design,
minimizes resource usage, and facilitates migration to maximize locality and balance
workloads.

5) Maximum performance and flexibility depend on a low-level kernel interface.
From the point of view of an individual application, the ideal operating system prob-
ably lies at one of two extremes: it either provides every facility the applicatio., needs,
or else provides a flexible and efficient set of primitives from which those facilities can
be built. A kernel that lies in between is likely to be both awkward and slow: awkward
because it has sacrificed the flexibility of the more primitive system, slow because it
has sacrificed its simplicity. Moreover a kernel with a high-level interface is unlikely to
be able to provide facilities acceptable to every application. Low-level primitives can
be much more universal. They imply the need for friendly software packages that -run
on top of the kernel and under user programs, but with a carefully-designed interface
these can be as efficient as kernel-level code and much less difficult to change.

6) A high-quality programming environment is essential. Some application pro-
grammers in our department who could have exploited the parallelism offered- by
the Butterfly continued to use Sun workstations and VAXen. These programmers
weighed the potential speedup of the Butterfly against the programming environ-
ment-of their workstation and found the Butterfly wanting. Of particular importance
are tools for parallel debugging. Our work with Instant Replay [LeBlanc and Mellor-
Crummey 1987; Fowler et al. 1988] clearly provided an important step in the right
direction. A high-quality environment for performance monitoring, called Moviola,
was also created.

6.3 Psyche

Preliminary ideas for Psyche date to 1986. Design work began in earnest in 1987,
and was essentially completed by the summer of 1988, when implementation began
on the BBN Butterfly Plus multiprocessor. Early plans-for Psyche were summarized
in a 1987 technical report [Scott and LeBlanc 1987]. Rationale for the design was
presented in 1988 [Scott and Marsh 1988]. Technical- reports on the user/kernel
interface [Scott et al. 1989a] and the memory management system [LeBlanc et al.
1989a] appeared in 1989, and were followed by workshop papers on open-systems
design-and the kernel implementation [Scott et al. 1989b,c]. A detailed discussion-of
multi-model programming appeared at the 1989 PPoPP conference.

The design of Psyche is based on the observation that access to shared memory
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is the fundamental mechanism for interaction between threads of control on a-multi-
processor. Any other abstraction that can be provided on- the machine must be b'Iilt
from this basic mechanism. An operating system whose kernel interface is based on
direct use-of shared memory will thus in some sense be universal.

The realm is the-central abstraction provided by the Psyche kernel. Each realm
includes data and code. The code constitutes a protocol for manipulating the data and
for scheduling threads of control. The intent is that the data should not -be accessed
except by obeying the protocol. In effect, a realm- is an abstract data object. Its
protocol consists of operations on the data that define the nature of the abstraction.
Invocation of these operations is the principal mechanism for communication between
parallel- threads of -conitrol.

The thread is the abstraction for control flow and scheduling. All threads that
begin execution in the same realm reside in a single protection domain. That
domain enjoys access to the original realm and any other -realms for which access
rights have been demonstrated to the -kernel. Part of the -layout of a thread context
block is defined by the kernel, but threads -themselves are- created- and scheduled- by
the -user. The kernel time-slices on each processor between protection domains in
which threads are active, providing upcalls -at quantum boundaries and whenever
else-a scheduling decision is required. -Context switches between -threads in the-same
protection- domain do not require kernel- intervention. In addition, a standardized
interface-to- scheduling routines allows threads- of different types- to block and -unblock
each other.

The -relationship between realms and- threads -is somewhat unusual: the conven-
tional- notion -of an anthropomorphic process has no--analog in- -Psyche. Realms are
passive- objects, but their -code controls all execution. Threads merely animate- the
code; -they -have no "volition" of -their own.

Depending on the degree-of protection- desired, an -invocation of a realm operation
can be -as fast as an ordinary procedure call or -as slow as a heavyweight -process
switch. We call the inexpensive version an optimized invocation; -the safer version -is
a protected-invocation. In the case of a trivial -protocol or truly -minimal protection,
Psyche- also pel)mits direct external access -to the data of a realm. One can -think of
direct acccss as -a mechanism for in-line expansion- of realm operations. By -mixing
the-use of protected, optimized, and in-line invocations, the programmer can obtain
(and pay -for) as much or as little- protection as desired.

Keys and access lists are the mechanisms used -to -implement protection. -Each
realm includes-an access list-consisting of <key, right> pairs. Each thread maintains
a list of-keys. The right to invoke an operation- of a realm -is conferred by possession
of a key for which appropriate permissions appear in the realm's access list. A key
is a large uninterpreted value affording probabilistic protection. The creation and
distribution of -keys -and the management of access -lists are all under user control,
enabling the implementation of many different protection policies.
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If optimized (particularly in-line) invocations are to proceed quickly, they must
avoid modification of memory maps. Every realm visible to a given thread must
therefore occupy a different location frorm the point of view of that -thread. In addition,
if pointers are to be stored in realms, then every realm visible to multiple threads
must occupy the same location -from the point of view of each -of those threads. In
order to satisfy these two requirements, Psyche -arranges for all coexistent sharable
realms to occupy disjoint locations in a single, global, virtual address space. Each
protection domain may have a different view of this address space, in the sense that
different subsets may be marked accessible, but the virtual to physical mapping does
not change.

The view of a protection domain is embodied in the hardware memory map.
Execution proceeds unimpeded until an attempt is made to access something not
included in the view. The resulting protection fault is fielded by the kernel, whose
job it is to either (1) announce an error, (2) update the current view and restart -the
faulting instruction, or (3) perform an upcall into the protection domain associated
with the target realm, in order to create a new thread to perform the attempted
operation. In effect, Psyche uses, conventional memory-management hardware as a
-cache for software-managed protection. Case (2) -corresponds to optimized invocation.
Future invocations of the same realm from the same protection -domain will proceed
-without kernel intervention. Case-(3) corresponds to protected invocation. The choice
-between cases is made by matching the key list of-the current thread against the access
list of the target -realm.

For both locality and communication, the philosophy of Psyche is to provide a
fundamental, low-level mechanism from which a wide variety of higher-level facilities
can be built. Realms with appropriate protocol operations can be used to implement
-the following:

1. Pure shared memory in the style of the BBN Uniform System [Thomas 19S8].
A single large collection of realms would be shared by all -threads. The access
protocol, in an abstract sense, would permit unrestricted reads and writes of
individual memory cells.

2. Packet-switched message passing. Each message would be a separate realm.
To send a message one would make the realm accessible to the receiver and
inaccessible to the sender.

3. Circuit-switched message passing, in the style of Accent [Rashid and Robertson
1981] or Lynx [Scott 1987]. Each communication channel would be realized as
a realm accessible to a limited number of threads, and would contain buffers
manipulated by protocol operations.

4. Synchronization mechanisms such as monitors, locks, and path ex)ressions.
Each of these can be written once as a library routine that is instantiated as a
realm by each abstraction that needs it.

37



5. Parallel data structures. Special-purpose locking could be implemented in a
collection of realms scattered across the nodes of the machine, in order to reduce
contention. The entry routines of the data structure as a whole might be fully
parallel, able to be executed without synchronization until access is required to
particular pieces of the data.

Psyche provides a low-level interface with uniform naming and an emphasis on
dynamic fine-grained sharing. Through its use of data abstraction, lazy evaluation of

protection, and parameterized user-level scheduling, it allows programs written un-

der many different programming models to coexist and interact. The conventions of

realm protocols, upcalls, and block and unblock routines provide a structure for com-
munication across models that is, to the best of our knowledge, unprecedented. With

appropriate permissions, user-level code can exercise full control over the physical

resources of memory, processors, and devices. In effect, it should be possible un-

der Psyche to implement almost any application for which the underlying hardware

is appropriate. This, for us, constitutes the definition of "general-purpose parallel

computing."

Psyche differs from existing multiprocessor operating systems in several funda-

-mental ways.

1. It employs a uniform name (address) space for all its user programs without
relying on compiler support for protection.

2. It evaluates access rights lazily, permitting the distribution of rights -without
kernel intervention.

3. It places the management of threads, and in fact their definition, in the hands

of user-level code.

4. It minimizes the need for kernel calls in general by relying whenever possible

on shared user/kernel data structures that can be examined asynchronously.

5. It provides the user with an explicit tradeoff between protection and perfor-
mance by facilitating the interchange of protected and optimized invocations.

The kernel provides the foundation for a wide variety of future work in parallel

systems as well- as for applications (including real-time artificial intelligence). It is
conceived as a -lowest common denominator for a multiprocessor operating system,

providing only those functions necessary to access physical resources and implement
protection in higher layers. The three fundamental kernel abstractions are the seg-
ment, the address space, and the thread of control. All three are protected through

capabilities. Unusual features include an inter-address-space communication mecha-

nism based on explicit transfer of control between threads and a facility for reflecting
memory protection violations upwards into user-space fault handlers.
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As of November 19S9 we were able to run our first real user applications. Imple-
mented portions of Psyche include

* Low-level machine support: interrupt handlers, virtual memory (without pag-
ing), full support for inter-kernel shared memory, synchronous inter-kernel com-
munication via remote interrupts, support for atomic hardware operations, re-
mote source-level kernel debugging, and loading of the kernel via Ethernet.

* Core support for the Psyche user interface: realms, virtual processors, pro-
tection domains, keys and access lists, software interrupts, and protected and
optimized invocation of realm operations.

* Rudimentary I/O to the console serial device, and remote file service via Eth-
ernet.

* Minimal user-level tools: a simple shell, program loader, and name server, sup-
port for command-line argument passing, simple handlers for software inter-
rupts, and standard I/O and kernel call libraries.

We expect our work- on Psyche to evolve into many interrelated projects. We are
already experimenting with novel and promising approaches to-memory management,
inter-node- communication within the kernel and- support for remote debugging. We
are working to develop-practical techniques to maximize locality of reference through
automatic code and data migration. We expect our future efforts to include work
on lightweight process structure, implementation and evaluation of communication
models, and parallel language design. The latter-subject is of particular interest. We
have specifically avoided language dependencies in the design of the Psyche kernel. It
is our intent that many languages, with widely differing process and communication
models, be able to coexist and cooperate on a Psyche machine. We are interested,
however, in the extent to which the Psyche philosophy itself can be embodied in a
programming language.

The communications facilities of a language enjoy considerable advantages over a
simple subroutine library. They can be integrated with the naming and type structure
of the language. They can employ alternative syntax. They can make use of implicit
context. They can produce language-level exceptions. For us the question is: to what
extent can these advantages be provided without insisting on a single communication
model at language-design time? We expect these questions to form the basis of future
work.

The Psyche design was motivated and continues to be driven by the needs of
application programs, primarily Al applications. Our experiences in the development
of individual vision progra,.o on the Butterfly provided the lessons upon which the
Psyche design was based. We successfully used the active vision and robotics project
as a vehicle for evaluating the Psyche design and implementation.
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Our laboratory for active vision and robotics assumes a hardware configuration in
which camera output is fed into a pipelined image processor and the general-purpose
multiprocessor is reserved for higher-level planning and control. Initially, most of
these higher-level functions were performed on a uniprocessor Sun. As the Psyche
implementation became available, some of these functions were migrated onto the
Buttterfly. By making this migration an explicit part of the development process
we permitted early work in the systems and application domains to proceed in a
semi-decoupled fashion, with neither on the other's critical path. The success of
our previous efforts in operating system implementation for the Butterfly [Mellor-
Crummey et al. 1987], together with the fact that Psyche construction is now well
underway, suggests that the availability of the operating system is unlikely to be a
problem in later phases of the project.

Research in this direction is continuing, with further hardware support provided

by an NSF IIP grant. Once software has moved to the Butterfly, we expect our higher-
level functions to involve hundreds of parallel threads of control. Some of these threads
will share data structures. Others will interact through message passing. Some will
be confine their activities to the multiprocessor. Others will interface to the image
processor and the camera and robot controls. Those that share data are likely to
differ in their needs for synchronization and consistency.

7 Programming Environments for Pipelined Par-
allel Vision: Zebra and Zed

Under the RADC contract, Rochester developed an object oriented programming
interface to Datacubes MaxVideo family of image processing boards. The system is
called Zebra. Zebra is not simply a packaged version of the standard Maxware calls,
but rather a different style of programming for the Datacdbe hardware.

The basic philosophy of Zebra is two-fold. First, each board type is represented
by an object class. Each physical MaxVideo board is represented by an instance of
its class. Simply by declaring the board objects as variables, the boards are opened
and initialized. Second, Zebra takes a microprogramming-like approach to control-
ling Datacube boards. The register set for each board is considered to be a micro-
instruction word. This instruction word completely specifies a board configuration.
By sending instruction words to boards, the hardware can be completely progiamined
in a microprogramming-like manner.

The nature of applications code becomes largely different from that of Maxware
counterparts. The configuration of MaxVidco boards is not rcprcscntcd in the call se-
quence of the application program but rather in a text file whicli may be changed with-
out recompiling the application program. Thus the development pliocess is stream-
lined by requiring fewer compilations.
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Instruction words can be stored in and retrieved from files, allowing the sharing
of standard configurations between developers. Instruction words are created an
modified via an instruction word editor. One such editor "Zed" is provided with
Zebra.

Zed allows a programmer to create a new instructic- word or modify an existing
one directly from the keyboard. This instruction word may then be saved in a file
or loaded directly into a physical board for testing. This allows rapid prototyping of
board configurations.

Some details of Zebra are the following.

* It is object oriented, and written in C++: It encapsulates each-board as an ob-
ject, created and initialized upon declaration, that can be updated and queried.

* It leads to far less complicated applications code than Maxware.

* It uses explicit human- and program- read/writeable board descriptions, which
are a succinct and stable way to store, access, re-use, and share board configu-
rations.

* It is not based on any-other interfacc software (it does not use Maxware or the
-Datacube device driver, for instance).

* It already runs on two dissimilar architectures at UR (the BBN-ACI Butterfly
-Pacallel Processor and Suns). It only assumes a memory-mapzoperating system
call and so is highly portable between host architectures.

Rochester has also developed Zed, which- is released with Zebra. Zed has the
following characteristics.

* It is an illustrative Zebra application.

e It provides an interactive, menu-based interface for board configuration, editing,
and experimentation.

* It runs on any standard terminal, and under Suntools and X-windows.

e It allows new users to begin using Datacube hardware in minutes.

The following example Zebra program uses the P3 bus to implement a full-frame
continuous transfer of image data from Digimax to a ROI-Store 512, back to Digimax,
and-up onto a monitor.
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main()
{

// create and init the boards

1 dgBoard digimax(DGOOBASE, DG_00_IVEC, "ZdgInit.zff");

2 rsBoard rsO(RSOORBASE, RSOOMBASE, RSM512, RS_.OOIVEC,
"ZrsCont512 .zff");

// fire the transfer

3 rsO.fire(RSREAD);

4 rsO.fire(RSWRITE);

}

Line one declares an object of class dgBoard with the name digimax. This opens
the board specified at VME address "DG_00.BASE", and initializes the board with
the configuration in file "ZdgInit.zff". Line two-similarly declares a roistore -board
object. Lines three and four are analogous to Maxware rsRFire and rsWFire respec-
tively. Note that to change this program to do a singleshot "snapshot" transfer, the
configuration file can be changed without recompiling the program. Alternatively a
different configuration file can be used. Zebra and Zed are available free of charge by
anonymous FTP- from CS. Rochester.Edu.

8 Other Programming Libraries and Utilities for
MIMD Parallelism

Several low-level communications utilities were- written to support the interaction of
parallel image processing with action. Communication between the embedded con-
troller in the robot arm and controlling software on the host is via 9600 baud serial
line. On top of -the serial line -is layered a reliable data link protocol, implemented
under Unix as a tty line discipline and in the robot controller as a part of the VAL
execution monitor. Above the data link layer is a protocol supporting multiple logi-
cal channels between the robot and the host. The data link software was developed
and distributed by the Electrical Engineering Department at Purdue University. The
logical channel software (BOTLIB) %v" inspired by an analogous interface developed
at Purdue, but has been completely re-engineered at Rochester to provide more flex-
ibility and speed. It provides routines to get the current robot location in terms of
standard coordinates or joint angles, move the robot to a specified location in terms
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of standard coordinates or joint angles, set the speed of the robot, and to set the
location and orientation of the tool tip. The software is organized as a C language
library. The routines described above can be called from the application program.

An alternate C library (ROBOCOMM) was written by Brian Yamauchi for use
in the Juggler project (see below). ROBOCOMM is much faster than the BOTLIB
package since it does not use the multi-layered, reliable ISO-standard structure for
communication.

Work in these areas is continuing past the contract period. Connection between
the Butterfly serial ports and the robot is being explored by Mark Crovella, who is
adding Psyche capabilities to manage such communications. When complete, this
facility will give-individual Butterfly processors the ability to communicate directly
with the robot.

Under the RADC contract, Rochester developed several compilers, program li-
braries, systems utilities for communication, and file systems. The results at the-end
of the contract period span a broad range from parallel file systems through new lan-
guages for expressing parallel computation. Applications packages- such as the current
version of the neural net simulator [Fanty 1986, 1988; Goddard et al. 1989] and the
image-processing utilities produced throughout the contract period allow speedups
of up to a factor of 100 over single-workstation- implementations [Olson et al i987,
Olson 1986b,c]. User interfaces to large multiprocessor computers-are a difficult issue,
but we have contributed to that as well [Scott and Yap 1988; Yap and Scott 1990,
Olson 1986a] and we are still working to extend the range of computational models
available to a user. For instance- the Ant Farm project provides the basic capability
to support many lightweight processes.

"An Empirical Study of Message-Passing Overhead," by M. L. Scott and A. L.
Cox, appeared at the 7th International Conference on Distributed Computing Sys-
tems in Berlin, West Germany in September 1987. It reports on efforts to optimize the
performance of the LYNX run-time support package, and presents a detailed break-
down of costs in -the final implementation. This breakdown (1) reveals the marginal
cost of various features of LYNX, (2) cariies important implications for the costs of
related features in other languages, and (3) sets an example for similar studies in other
environments. Other work in this important effort of quantifying parallel behavior is
also documented in [Floyd 1989; LeBlanc et al. 1988; LeBlanc 1988a, 19881); Scott
and Cox 1987].

The "Ant Farm" library package was used to develop applications [Scott and Jones
1989]. It supports extremely large numbers (c. 25,000) of lightweight processes in
Modula-2 with location-transparent communication.

We constructed and studied the performan~ce of a novel operating system for the
Butterfly, called Elmwood. "Elnwood-An Object-Oriented Multiprocessor Operating
System" appeared in Software-Practice and Experience [Mellor-Crummey et al. 1987;
LeBlanc et al. 1989].

43



"Crowd Control: Coordinating Processes in Parallel" by T.J. LeBlanc and S. Jain
appeared in the Proc. of the International Conference on Parallel Processing. This
paper describes a library package for the Butterfly that can be used to create a parallel
schedule for large numbers of processes. A partial order is imposed on the execution
based on an arbitrary embedding of processes in a balanced binary tree [LeBlanc and
Jain 1987].

Other utilities developed over the contract period include the Bridge file system
for parallel I/O, by Peter Dibble [Dibble et al. 1988; Dibble and Scott 19S9a,b], the
Platinum and Osmium systems for automatically resolving cacheing and non-uniform
reference problems in SIMD-like computations [Fowler and Cox 1988a,b; Cox and
Fowler 1989]. and many other pieces of work cited in the references [Olson 1986a,
Mellor-Crummey 1987; Gafter 1987, 1988; Bolosky 19S9].

Characteristics of several programming utilities are compared in Table 2, which
also includes some well-known programming systems for NUMA MIMD computers
such as the Butterfly available commercially (Uniform System, Emerald, Linda). This
extensive experience in :implementing and analyzing the performance of parallel pro-
gramming models has naturally led to the ideas behind the Psyche system [Scott and
LeBlanc 1987; Scott et al. 1988, 19S9a,b,c, 1990].

9 Programming Environments for MIMD Paral-
lelism

A major portion of the work under the RADC contract concentrated on problems of
monitoring and debugging programs for the parallel vision environment. Rochester
developed many tools to help the user effectively implement parallel algorithms [e.g.
LeBlanc 1989; LeBlanc et al. 1990; Mellor-Crummey 1988, 1989]. The main thrust
has been the construction of parallel performance monitoring tools and experimenta-
tion with the use of these tools [e.g. Fowler and Bella 1989; Fowler et al. 1989].

One of the most serious problems in the development cycle of large-scale parallel
programs is the lack of tools for debugging and performance analysis. Three issues
complicate parallel program analysis. First, parallel programs can exhibit nonrepeat-
able behavior, limiting the effectiveness of traditional cyclic debugging techniques.
Second, interactive analysis, frequently employed for sequential programs, can distort
a parallel program's execution behavior beyond recognition. Third, comprehensive
analysis of a parallel program's execution requires collection, management, and pre-
sentation of an enormous amount of data. Our work addressed all of these problems.

Our work has been different from other research in parallel program analysis in
two key respects. First, our focus was on large-scale, shared-memory multiproces-
sors. Second, our approach integrated debugging and performance analysis, using a
common representation of program executions.
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Package processes scheduling commnunication syncluoflization protedtion

Uniform System procedure weight concurrent: run shared memory spin locks, none
to completion atom-ic queues

Lynx one per address processes oon- R1PC implicit in between

space; multi- current: threads communication processes

threaded run until blocked

SMIF one per address concuirrant, non-blocking implicit in between

________ space preesnptable messages communication Processes

Chrysalis++t one per address concurrent, shared memory, events, between

_____ _ SPAce preemptable, messages atomic queues processes

Ant Farm coroutine weight, run utitl blocked shard menmory events, monitors, none

staically located withi a processor queues, semaphores

MultiLisp coroutine weight concurrent, shared memory monitors; implicit none

preemptable in expression
evaluation

Platinum multiple per Concurrent, shared memory, spin locks; between

address space; preemptable messages implicit in address

kernel managed communication spaces

Elm wood multiple per concunrent, pre- objec invocation; implicit in invoc-a- between

address space;, emptable; move shared memory dion: semaphores address spces

kernel managed between objects within objects and conditions (objects)
within objects

Emerald coroutine weight cocurent. pre- objet invocation; implicit in invoca- between objects

eniptable; move shared memory don; monitors (compiler

between objects within objects within objects enforced)

Linda unspecified concurrent, shared assoc- implicit in unspecified;

preesnptable jative stoic store ac cs often provided

'fable 2: Programming systemns (six developed at Rochester) for NUMA MIMD corn-
puters.



The core of our toolkit consists of facilities for recording execution histories, a
common user interface for the interactive, graphical manipulation of those histories,
and tools for examining and manipulating program state during replay of a previously
recorded execution. These facilities form a foundation upon which we can construct
more complex tools such as symbolic debuggers, execution profilers, and performance
analyzers.

We have constructed a set of tools for instrumenting parallel programs on the
Butterfly for performance analysis. Each process in an instrumented program records
on its own "history tape" each of its interactions with shared objects including the
relative timing of the operations.

An execution history is represented naturally as a directed acyclic graph (DAG)
of process interactions. Nodes in the graph correspond to monitored events that
took place during execution. Each event represents an operation on a shared object.
Events within a process are linked by arcs denoting a temporal relation based on
a local time scale. Arcs between events in different processes denote interprocess
communication and synchronization.

The collection of history tapes from the individual processes can be combined to
give a consistent view of the execution-of the program as a whole. This view contains
information useful for identifying critical paths, bottlenecks, and hot spots in the
program.

An execution of a parallel program-instrumented for performance monitoring gen-
erates a massive amount of data. This data is incomprehensible in its raw form
so we developed an interactive graphical display and analysis -program called Movi-
ola. Moviola features a flexible user -interface (graphics and LISP) and analytic tools
(critical path analysis).

The "streams" package part of the NFS (Network File System) interface to the
Butterfly was implemented. Mellor-Crummey produced an integrated instrumenta-
tion package that extends Instant Replay with the performance monitoring package.
This uses the streams package for asynchronous transfer of "history data."

Using Moviola and the instrumentation package, we experimented with their use
in the debugging and performance analysis and tuning. Mellor-Crummey's thesis
demonstrated their effects in the development of parallel sorting programs [Mellor-
Crummey 1989].

9.1 Performance Monitoring and Debugging

Parallel programming requires that programmers deal with new and unfamiliar ab-
stractions, often using tools designed for sequential programs. Debugging is compli-
cated by parallelism, and traditional cyclic techniques for debugging may not help,
since many parallel programs have non-repeatable behavior. Program profilers are
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of little use in performance tuning, since it may be difficult to determine the impact
of an individual -process on overall performance, the effects of process decomposi-
tion, and the outcome of specific optimizations. Tools that report the instantaneous
level of parallelism can illustrate how well the program is performing, but provide no
guidance on how to improve parallelism.

For the past four years we have been developing a toolkit for debugging and per-
formance analysis of parallel programs on large-scale shared-memory multiprocessors.
Our approach is to use program replay in cyclic, post-mortem analysis Cyclic debug-
ging assumes that experiments are interactive and repeatable, and that all relevant
program behavior is observable. Unlike other work, such as Behavioral Abstraction
or PIE in which monitoring software filters relevant information during execution, we
save enough information to reproduce an execution for detailed analysis off-line. A
distinguishing characteristic of our work is the integration of debugging and perfor-
mance analysis, based on a common underlying representation of program executions.

In parallel program analysis, the focus of concern is no longer simply the internal
state of a single process, but must include internal states of (potentially) many -dif-
ferent processes and the interactions among processes. A cyclic methodology can-still
be used, but four--issues that complicate analysis-must first be addressed: (1) parallel
programs often exhibit nonrepeatable behavior, (2) interactive analysis can distort a
parallel program's execution, (3) analysis of large-scale parallel programs requires-the
collection, management, and presentation of an enormous amount of data, and- (4)
the-execution environment, which must admit extensive parallelism, and the analysis
environment, which must provide a single, comprehensive user-interface, may differ
dramatically. Our research is currently devoted to addressing each of these issues.

9.2 Monitoring Parallel Programs

Monitoring parallel programs for cyclic debugging requires that essential information
be-extracted during execution to- allow for reproducible experiments. Unfortunately,
parallel programs may exhibit timing-dependent behavior due to- race conditions in
synchronization or programmer intervention during debugging. To allow cyclic de-
bugging and reproducible behavior during debugring, the monitoring system must
capture both program state information and relative timing information.

Several message-based debuggers have been developed that record the contents of
each message sent in the system in an event log The programmer can either review
the messages in the log, in an attempt to isolate errors, or the events can be used as
input to replay the execution of a process in isolation. Experiments with executions
can be reproduced by presenti'lg the same messages to each process in the proper
sequence.

Our approach to monitoring for shared-nemory parallel programs is based on a
partial order of accesses to shared objects In this approach, all interactions between
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processes are modeled as operations on shared objects. During program execution
each process records a history of its accesses to shared objects, collecting a trace
of all synchronization events that occur. The union of the individual plrocess histo-
ries specifies a partial order of accesses to each shared object. This partial order,
together with the source code and input, characterizes an execution of the parallel
program. Since an execution history contains only synchronization information, it

is much smaller than a record of all data exchanged between processes, making it
relatively inexpensive to capture.

In addition to race conditions, other nondeterministic execution properties, such
as asynchronous interrupts, can cause nonreproducible behavior. We have developed a
software instruction counter to reproduce these events during program replay [Mellor-
Crummey and LeBlanc 1989].

9.3 A Toolkit for Parallel Program Analysis

The information we collect during program monitoring can be-used to replay a pro-
gram during the debugging cycle. During replay, events cal be observed at any level
of detail, and controlled experiments can be performed. More important, however, is

that we use program monitoring to create a representation for an execution that can
be analyzed by our programmable toolkit.

The core of our toolkit consists of facilities for recording execution histories, a
common user interface for the interactive, graphical manipulation of those histories,
and tools for examining and manipulating program state during replay of a previously
recorded execution. The user interface for the toolkit resides on the programmer's
workstation and consists of two major components: an interactive, graphical browser
for analyzing execution histories, and a programmable Lisp environment. The execu-
tion history browser, called Moviola, is written in C and runs under the X Windows
System.

Moviola implements a graphical view of an execution based on a DAG represen-
tation of processes and communication. Moviola gathers process-local histories and
combines them into a single, global execution history in which each edge represents a
temporal relation between two events. In a Moviola diagram, time flows from top to
bottom. Events that occur ,ithiji rocess are aligned vertically, forming a time-line
for that process. 1:;d.s ; 'r - -,. its in different processes reflect temporal rela-
tionships resulting from synclu.,. _ion. Event placement is deternined by global
logical time computed from the partial order of events collected during execution.
Each event is displayed as a shaded box with height proportional to the duration of
the event (e.g. Fig. 17).

Moviola's user interface provides a rich set of operations to control the graphical
display. Several interactive mechanisms, including independent scaling in two dimen-
sions, zoom, and smooth panning, allow the programmer to concentrate on interesting
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Figure 17: A Moviola diagram produced for an execution of a sort program in which
the bug is clearly apparent - processors (on the right) did not hand off their work
correctly, resulting in idleness and deadlock.
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portions of the graph. Individual events can be selected for analysis using the mouse;
the user has control over the amount and type of data displayed for selected events.
The user can also control which processes are displayed and how they are displayed.
By choosing to display dependencies for a subset of the shared objects, screen clutter
can be reduced.

Many different analyses are possible based on this graphical view of an execution,
but the sheer size of an execution history graph makes it impractical to base all
analyses on manual manipulation of the graph. Extensibility and programmabilty
are provided by running all tools under the aegis of Common Lisp. Tools can take
the form of interpreted Lisp, compiled Lisp, or, like Moviola, foreign code loaded
into the Lisp environment. Our programmable interface enables a user to write Lisp
code to traverse the execution graph built by Moviola to gather detailed, application-
specific performance statistics. The programmable interface is especially useful for
performing well-defined, repetitive tasks, such as gathering the mean and standard
deviation of the time it takes processes to execute parts of their computation, or how
much waiting a process performs during each stage of a computation.

The programmable interface can also be used to create different views of an exe-
cution. We might want to use program animation to analyze dynamic activity over
static communication channels, or application-specific views to describe the progress
of a computation in terms of the program, rather than the low-level view provided
by Moviola. For performance analysis, the performance graphs produced by PIE or
SeeCube are much more effective than a synchronization DAG. Our current work is
using the programmable interface to extend the range of views for an execution avail-
able to users, from application-specific views to detailed performance graphs (Fig.
is).

We have already constructed a mechanism for remote, source-level debugging for
Psyche, in the style of the Topaz TeleDebug facility developed at DEC SRC. An
interactive front end runs on a Sun workstation using the GNU gdb debugger. The
debugger communicates via UDP with a multiplexor running on the Butterfly's host
machine. The multiplexor in turn communicates with a low-level debugging stub (lld)
that underlies the Psyche kernel.

We have successfully used this facility for kernel debugging and plan to use it as
a base for user-level, multi-model debugging. Low-level debugger functions will be
implemented by a combination of gdb and lid. High-level commands from the user
will be translated by a model-specific interface, created as part of the programming
model.

In addition, debugger stubs have been implemcnted to enable complex debugger
queries and conditional breakpoints during execution. The toolkit has been integrated
with an extended version of the gdb debugger, enabling source level debugging during
replay of multiprocess programs. The Moviola graphical interface has been improved,
significantly reducing the display time and increasing the functionality. The S graph-
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Figure 18: A perspective plot of communication time per process per row for Gaussian
Elimination, as produced by the toolkit. The x-axis corresponds to the 36 processes
in the comp,,tation, the y-axis corresponds to rounds of communication, one per pivot
row, and the z-axis is communication time for a round. The plot shows the increase
in communication 'ine (caused by contention) as the computation progresses.
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ics package has been added to the toolkit, facilitating graphical displays of perfor-
mance data. LISP tools have been written for critical path analysis and for gathering
and plotting performance statistics. All displays in the toolkit can be reproduced as
hardcopy using Postscript format.

We are beginning to explore the relationship between program analysis, program-
ming model (process and communication semantics), and visualization. We are in-
vestigating techniques that can be used across several parallel programming models,
and a tool interface that allows a programmer to debug using the primitives provided
by a particular programming model. Our goal is to (a) provide a framework that
unifies our approach, as embodied in our toolkit, with the various techniques for pro-
gram monitoring and visualization that have been described in the literature and (b)
develop a methodology, and corresponding tools, for parallel program analysis that
can be used step-by-step by programmers for the entire software development cycle,
from initial debugging to performance modeling and extrapolation.

10 Technology Transfer

Under the contract Rochester developed large amounts of Butterfly application- soft-
ware, the Connectionist Simulator, and the Zebra/Zed system for object-oriented
register level programming. The simulator and Zebra/Zed are available by anony-
mous ftp or magnetic media, and hundreds of copies have been sent out worldwide.

Rochester has a substantial Industrial Affiliates Program, with industrial partners
including BBN, GE, Kodak, and Xerox. In the recent past, we have had active
research collaboration in the areas of vision, reasoning, and parallel programming
environments with each of these affiliates. We have an annual meeting to keep affiliates
abreast of our work, and to keep them aware of students and personnel here with
whom they may have interests in common. Rochester students normally spend one or
two summer terms working in industry, and the resulting ties with IBM, GE Research,
GM Researth, AT&T, and Xerox (both PARC and Webster Research Centers) are
healthy and strong. These couplings are often demonstrated in observable product
(the indefinite loan of the IBM SCE computer to Fowler, the joint publications of
Swain and J.L. Mundy of GE Research, etc.).

Rochester participated in the first DARPA parallel vision architecture benchmark,
and the resulting applications software (as well as the other programming libraries and
facilities we have developed), are disseminated through BBN. Rochester's large and
well-subscribed technical reports service distributes reports to hundreds of industrial
and academic sights monthly.

There is evidence that scientific papers have transferred some of the technology
successfully: the Instant Replay system was implemented on Sequent computers by
a group in Germany, for example. Through an international computer new3group

52



the expertise on the DataCubc pipelined processor is both shared and acquired. The
Rochester Connectionist Simulatoi and the Zebia/Zed sybtems are available b) anony-
mous ftp. Together they have been distributed to several hundred sites worldwide.

11 Thesis Abstracts

Several theses appeared during the contract period that were directly related to the
contract. Many more were initiated during the contract period and have been com-
pleted since, or are still (1990) in process. The following are representative of earlier
work under the contract.

Aloimonos, J., "Computing intrinsic images," Ph.D. Thesis and TR 198, August
1986: Several theories have been proposed in the literature for the computation of
shape from shading, shape from texture, retinal motion from spatiotemporal deriva-
tives of the image intensity function, and the like. However: (1) The employed
assumptions are not present in a large subset of real images. (2) Usually the natu-
ral constraints guarantee unique answers, calling for strong additional assumptions
about the world. (3) Even if physical constraints guarantee unique answers, often the
resulting algorithms are not robust. This thesis shows that if several available cues
are combined, then the resulting algorithms compute intrinsic parameters (shape,
depth, motion, etc.) uniquely and robustly. The computational aspect of the theory
envisages a cooperative highly parallel implementation, bringing in information from
five different sources (shading, texture, motion, contour and stereo), to resolve ambi-

guities and ensure uniqueness and stability of the intrinsic parameters. The problems
of shape from texture, shape from shading and motion, visual motion analysis, and
shape and motion from contour are analyzed in detail.

Bandopadhay, A., "A computational study of rigid motion perception," Ph.D. The-
sis and TR 221, December 1986: The interpretation of visual motion is investigated.

The task of motion perception is divided into two major subtasks: (1) estimation of
two-dimensional retinal motion, and (2) computation of parameters of rigid motion
from retinal motion. Retinal motion estimation is performed using a point matching
algorithm based on local similarity of matches and a global clustering strategy. The
clustering technique unifies the notion of matching and motion segmentation and pro-
vides an insight into the complexity of the matching and segmentation process. The

constraints governing the computation of the rigid motion parameters from retinal
motion are investigated. The emphasis is on determining the possible ambiguities of
interpretation and how to remove them. This theoretical analysis forms the basis of a
set of algorithms for computing structure and three-dimensional motion parameters
from retinal displacements. The algorithms are experimentally evaluated. The main

difficulties facing the computation are nonlinearity and a high-dimensional search
space of solutions. To alleviate these difficulties, an active tracking method is pro-
posed. This is a closed loop system for evaluating the motion parameters. Under
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such a regime, it is possible to obtain form solutions for the motion parameters. This
leads to a robust cooperative algorithm for motion perception requiring a minimal
amount of retinal motion matching. The central theme for this research has been
the evaluation of a hierarchical model for visual motion perception. To this eid,
the investigations revolved around three primary issues: (1) retinal motion computa-
tion from intensity images; (2) the conditions under which three-dimensional motion
may be computed from retinal motion, and the efficacy of algorithms that perform
such computations; (3) the active vision or closed loop approach to visual motion
interpretation and what it buys us.

Chou, P. B.-L., "The theory and practice of Bayesian image labeling," Ph.D. The-
sis and TR 258, August 1988: Integrating disparate sources of information has been
recognized as one of the keys to the success of general purpose vision systems. Image
clues such as shading, texture, stereo disparities and image flows provide uncertain,
local and incomplete information about the three-dimensional scene. Spatial a priori
knowledge plays the role of filling in missing information and smoothing out noise.
This thesis proposes a solution to the longstanding open problem of visual integra-
tion. It reports a framework, based on Bayesian probability theory, for computing
an intermediate representation of the scene from disparate sources of information.
The computation is formulated as a labeling problem. Local visual observations for
each image entity are reported as label likelihoods. They are combined consistently
and coherently on hierarchically structured label trees with a new, computationally
simple procedure. The pooled label likelihoods are fused with the a priori spatial
knowledge encoded as Markov Random Fields (MRFs). The a posteriori distribution
of the labelings are thus derived in a Bayesian formalism. A new inference method,
Highest Confidence First (HCF) estimation, is used to infer a unique labeling from
the a posteriori distribution. Unlike previous inference methods based on the MRF
formalism, HCF is computationally efficient and predictable while meeting the prin-
ciples of graceful degradation and least commitment. The results of the inference
process are consistent with both observable evidence and a priori knowledge. The ef-
fectiveness of the approach is demonstrated with experiments on two image analysis
problems: intensity edge detection and surface reconstruction. For edge detection,
likelihood outputs from a set of local edge operators are integrated with a priori
knowledge represented as an MRF probability distribution. For surface reconstruc-
tion, intensity information is integrated with sparse depth measurements and a priori
knowledge. Coupled MRFs provide a unified treatment of surface reconstruction and
segmentation, and an extension of HCF implements a solution method. Experiments
using real image and depth data yield robust results. The framework can also be
generalized to higher-level vision problems, as well as to other domains.

Dibble, P.C., "A Parallel Interleaved File System," Ph.D. Thesis and TR 334,
March 1990: A computer system is most useful when it has well-balanced processor
and I/O performance. Parallel architectures allow fast computers to be constructed
from unsophisticated hardware. The usefulness of these machines is severely limited
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unless they are fitted with I/O subsystems that match their CPU performance. Most
parallel computers have insufficient I/O performance, or use exotic hardware to force
enough I/O bandwidth through a uniprocessor file system. This approach is only
useful for small numbers of processors. Even a modestly parallel computer cannot be
served by an ordinary file system. Only a parallel file system can scale with the pro-
cessor hardware to meet the I/O demands of a parallel computer. This dissertation
introduces the concept of a parallel interleaved file system. This class of file system
incorporates three concepts: parallelism, interleaving, and tools. Parallelism appears
as a characteristic of the file system program and in the disk hardware. The parallel
file system software and hardware allows the file system to scale with the other com-
ponents of a multiprocessor computer. Interleaving is the rule the file system uses to
distribute data among the processors. Interleaved record distribution is the simplest
and in many ways the best algorithm for allocating records to processors. Tools are
application code that can enter the file system at a level that exposes the parallel
structure of the files. In many cases tools decrease interprocessor communication by
moving processing to the data instead of moving the data. The thesis of this disser-
tation is that a parallel interleaved file system will provide scalable high-performance
I/O for a wide range of parallel architectures while supporting a comprehensive set
of conventional file system facilities. We have confirmed our performance claims ex-
perimentally and theoretically. Our experiments show practically linear speedup to
the limits of our hardware for file copy, file sort, and matrix transpose on an array of
bits stored in a file. Our analysis predicts the measured results and supports a claim
that the file system will easily scale to more than 128 processors with disk drives.

Floyd, R.A., "Transparency in distributed file systems," Ph.D. Thesis and TR
272, January 1989: The last few years have seen an explosion in the research and
development of distributed file systems. Existing systems provide a limited degree
of network transparency, with researchers generally arguing that full network trans-
parency in unachievable. Attempts to understand and address these arguments have
been limited by a lack of understanding of the range of possible solutions to trans-
parency issues and a lack of knowledge of the ways in which file systems are used. We
address these problems by: (1) designing and implementing a prototype of a highly
transparent distributed file system; (2) collecting and analyzing data on file and di-
rectory reference patterns; and (3) using these data to analyze the effectiveness of
our design. Our distributed file system, Roe, supports a. substantially higher degree
of transparency than earlier distributed file systems, and is able to do this in a het-
erogeneous environment. Roe appears to users to be a single, globally accessible file
system providing highly available, consistent files. It provides a coherent framework
for uniting techniques in the areas of naming, replication, consistency control, file
and directory placement, and file and directory migration in a way that provides full
network transparency. This transparency allows Roe to provide increased availability,
automatic reconfiguration, effective use of resources, a simplified file system model,
and important performance benefits. Our data collection and analysis work provides
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detailed information ol short-term file reference patterns in the UNIX environment.
In addition to examining the overall request behavior, we break references down by
the type of file, owner of file, and type of user. We find significant differences in ref-
erence patterns between the various classes that call be used as a basis for placement
and migration algorithms. Our study also provides, for the first time, information on
directory reference patterns in a hierarchical file system. The results provide striking
evidence of the importance of name resolution overhead in UNIX environments. Us-
ing our data collection analysis results, we examine the availability and performance
of Roe. File open overhead proves to be an issue, but techniques exist for reducing
its impact.

Friedberg, S.A., "Hierarchical process composition: Dynamic maintenance of struc-
ture in a distributed environment," Ph.D. Thesis and TR 294, 1988: This disserta-
tion is a study in depth of a method, called hierarchical process composition (HPC),
for organizing, developing, and maintaining large distributed programs. HPC extends
the process abstraction to nested collections of processes, allowing a multiprocess pro-
gram in place of any single process, and provides a rich set of structuring mechanisms
for -building distributed applications. The emphasis in HPC is on structural and
architectural issues in distributed software systems, especially interactions involving
dynamic reconfiguration, protection, and distribution. The major contributions of
this work come from the detailed consideration, based on case studies, formal analy-
sis, and a prototype implementation, of how abstraction and composition interact in
unexpected ways with each other and with a distributed environment. HPC ties pro-
cesses together with heterogeneous interprocess communication mechanisms, such as
TCP/IP and remote procedure call. Explicit structure determines the logical connec-
tivity between processes, masking differences in communication mechanisms. HPC
supports one-to-one, parallel channel, and many-to-many (multicasting) connectivity.
Efficient computation of end-to-end connectivity from the communication structure is
a challenging problem, and a third-party connection facility is needed to implement
dynamic reconfiguration when the logical connectivity changes. Explicit structure
also supports grouping and nesting of processes. HPC uses this process structure
to define meaningful protection domains. Access control is structured (and the ba-
sic HPC facilities may be extended) using the same powerful tools used to define
communication patterns. HPC provides escapes from the strict hierarchy for direct
communication between any two programs, enabling transparent access to global ser-
vices. These escapes are carefully controlled to prevent interference and to preserve
the appearance of a strict hierarchy. This work is also a rare case study in consis-
tency control for non-trivial, highly-available services in a distributed environment.
Since HPC abstraction and composition operations must be available during network
partitions, basic structural constraints can be violated when separate partitions are
merged. By exhaustive case analysis, all possible merge inconsistencies that could
arise in HPC have been identified and it is shown how each inconsistency can be
either avoided, automatically reconciled by the system, or reported to the user for
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application-specific reconciliation.

Loui, R.P., "Theory and computation of uncertain inference and decision," Ph.D.
Thesis and TR 228, September 1987: This interdisciplinary dissertation studies un-
certain inference pursuant to the purposes of artificial intelligence, while following
the tradition of philosophy of science. Its major achievement is the extension and
integration of work in epistemology and knowledge representation. This results in
both a better system for evidential reasoning and a better system for qualitative
non-monotonic reasoning. By chapter, the contributions are: a comparison of non-
monotonic and inductive logic; the effective implementation of Kyburg's indetermi-
nate probability system; an extension of that system; a proposal for decision-making
with indeterminate probabilities; a system of non-monotonic reasoning motivated by
the study of probabilistic reasoning; some consequences of this system; a convention-
alistic foundation for decision theory and non-monotonic reasoning.

Mellor-Crummey, J., "Debugging and analysis of large-scale parallel programs,"
Ph.D. Thesis and TR 312, September 1989: One of the most serious problems in the
development cycle of large-scale parallel programs is the lack of tools for debugging
and performance analysis. Parallel programs are more difficult to analyze than their
sequential counterparts for several reasons. First, race conditions in parallel programs
can cause non-deterministic behavior, which reduces the effectiveness of traditional
cyclic debugging techniques. Second, invasive, interactive analysis can distort a par-
allel program's execution beyond recognition. Finally, comprehensive analysis of a
parallel program's execution requires collection, management, and presentation of
an enormous amount of information. This dissertation addresses the problem of
debugging and analysis of large-scale parallel programs executing on shared-memory
multiprocessors. It proposes a methodology for top-down analysis of parallel program
executions that replaces previous ad-hoc approaches. To support this methodology,
a formal model for shared-memory communication among processes in a parallel pro-
gram is developed. It is shown how synchronization traces based on this abstract
model can be used to create indistinguishable executions that form the basis for de-
bugging. This result is used to develop a practical technique for tracing parallel
program executions on shared-memory parallel processors so that their executions
can be repeated deterministically on demand. Next, it is shown how these traces can
be augmented with additional information that increases their utility for debugging
and performance analysis. The design of an integrated, extensible toolkit based on
these traces is proposed. This toolkit uses execution traces to support interactive,
graphics-based, top-down analysis of parallel program executions. A prototype imple-
mentation of the toolkit is described explaining how it exploits our execution tracing
model to facilitate debugging and analysis. Case studies of the behavior of several
versions of two parallel programs are presented to demonstrate both the utility of our
execution tracing model and the leverage it provides for debugging and performance
analysis.
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Olson, T.J., "An architectural modcl of visual motion understanding," Ph.D. The-
sis and TR 805, August 1989: The past few years have seen an explosion of interest
in the recovery and use of visual motion information by biological and machine vision
systems. In the area of computer vision, a. variety of algorithms have been developed
for extracting various types of motion information from images. Neuroscientists have
made great strides in understanding the flow of motion information from the retina
to striate and extrastriate cortex. The psychophysics community has gone a long
way toward characterizing the limits and structure of human motion processing. The
central claim of this thesis is that many puzzling aspects of motion perception can be
understood by assuming a particular architecture for the human motion processing
system. The architecture consists of three functional units or subsystems. The first or
low-level subsystem computes simple mathematical properties of the visual signal. It
is entirely .bottom-up, and prone to error when its implicit assumptions are violated.
The intermediate-level subsystem combines the low-level system's output with world
knowledge, segmentation information and other inputs to construct a representation
of the world in terms of primitive forms and their trajectories. It is claimed to be
the substrate for long-range apparent motion. The highest level of the motion system
assembles intermediate-level form and motion primitives into scenarios that can be
used for prediction and for matching against stored models. This architecture is the
result of joint work with Jerome Feldman and Nigel Goddard. The description of the
low-level system is in accord with the standard view of early motion processing, and
the details of the high-level system are being worked out by Goddard. The secondary
contribution of this thesis is a detailed connectionist model of the intermediate level
of the architecture. In order to compute the trajectories of primitive shapes it is
necessary to design mechanisms for handling time and Gestalt grouping effects in
connectionist networks. Solutions to these problems are developed and used to con-
struct a network that interprets continuous and apparent motion stimuli in a limited
domain. Simulation results show that its interpretations are in qualitative agreement
with human perception.

Shastri, L., "Evidential reasoning in semantic networks: A formal theory and its
parallel implementation," Ph.D. Thesis and TR 166, September 1985: This the-
sis describes an evidential framework for representing conceptual knowledge, wherein
the principle of maximum entropy is applied to deal with uncertainty and incomplete-
ness. It is demonstrated that the proposed framework offers a uniform treatment of
inheritance and categorization, and solves an interesting class of inheritance and cate-
gorization problems, including those that involve exceptions, multiple hierarchies, and
conflicting information. The proposed framework can be encoded as an interpreter-
free, massively parallel (connectionist) network that can solve the inheritance and
categorization problems in time proportional to the depth of the conceptual hierar-
chy.

Sher, D.B., "A probabilistic approach to low-level vision," Ph.D. Thesis and TR
232, October 1987: A probabilistic approach to low-level vision algorithms results
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in algorithms that arc easy to tune for a particular application and modules that
can be used for many applications. Several routines that return likelihoods can be
combined into a single more robust routine. Thus it is easy to construct specialized
yet robust low-level vision systems out of algorithms that calculate likelihoods. This
dissertation studies algorithms that generate and use likelihoods. Probabilities derive
from likelihoods using Bayes's rule. Thus vision algorithms that return likelihoods
also generate probabilities. Likelihoods are used by Markov Random Field algorithms.
This approach yields facet model boundary pixel detectors that return likelihoods.
Experiments show that the detectors designed for the step edge model are on par with
the best edge detectors reported in the literature. Algorithms are presented here that
use the generalized Hough transform to-calculate likelihoods for object recognition.
Evidence, represented as likelihoods, -from several detectors that view the same data
with different models are combined here. The likelihoods that result are used to build
robust detectors.
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